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Abstract

Synaptic devices are necessary to meet the growing demand for the smarter and more efficient system. In this
work, the anisotropic rhenium disulfide (ReS2) is used as a channel material to construct a synaptic device and
successfully emulate the long-term potentiation/depression behavior. To demonstrate that our device can be used
in a large-scale neural network system, 165 pictures from Yale Face database are selected for evaluation, of which
120 pictures are used for artificial neural network (ANN) training, and the remaining 45 pictures are used for ANN
testing. A three-layer ANN containing more than 105 weights is proposed for the face recognition task. Also 120
continuous modulated conductance states are selected to replace weights in our well-trained ANN. The results
show that an excellent recognition rate of 100% is achieved with only 120 conductance states, which proves a high
potential of our device in the artificial neural network field.
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Background
Since the advent of modern computers, the von Neumann
structure, wherein the arithmetic unit is separated from
the memory, has been widely used. This kind of structure
makes data transmission between the arithmetic unit and
memory becomes a bottleneck, significantly limiting the
improvement of computer performances [1, 2]. Meanwhile,
the arithmetic unit and main memory are both volatile
devices with high energy consumption, and information
will disappear immediately if the power is cut off [3]. In
contrast, the human brain is an efficient information stor-
age and computing system with high fault tolerance and
low power consumption (about 20W), and it is based on a
highly interconnected, massively parallel, and structurally
variable complex network consisted of about 1011 neurons
and 1015 synapses [4, 5]. These neurons are considered to
be the brain’s computational engines, receiving input sig-
nals from thousands of synapses in parallel. Synaptic plasti-
city is a biological process that changes synaptic weight
through synaptic activities, and it is considered as a source
of learning and memory [6].
The two-dimension (2D) materials with a small size and

excellent electronic properties, such as graphene, transition

metal dichalcogenides (TMDCs), and black phosphorus,
have attracted significant attention and have been success-
fully implemented into synaptic devices [7, 8]. The TMDCs
with the symmetric lattice, such as MoS2 and WSe2, have
been widely studied [9, 10]. On the other hand, rhenium di-
sulfide (ReS2) with a distorted octahedral (1T) crystal struc-
ture has been rarely explored in the neuromorphic field.
Most TMDs have a direct bandgap in the monolayer and
an indirect bandgap in the multilayer, so a monolayer ma-
terial that is difficult to obtain is needed for good device
performance. However, ReS2 within ten layers are all con-
sidered to have a direct bandgap [11], which means ReS2
within ten layers can all perform well. Besides, the asym-
metric lattice structure leads to weaker interlayer coupling
energy, which benefits the exfoliation work, and thus makes
the synaptic device much easier to fabricate [12–15]. In this
study, ReS2 film is used as a channel material. The crystal
structure of monolayer ReS2 is shown in Fig. 1a, where
directions a and b denote the second shortest axis and the
shortest axis in the basal plane, respectively. Based on the
previous scientific researches and plenty of optical images
of our exfoliated ReS2 film [13], direction b denotes the
crystallographic orientation with the highest electron
mobility. To illustrate the electrical characteristics of our
ReS2 synaptic device better, direction b is considered as a
direction of channel current, as shown in Fig. 1b.
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There have been many devices with different structures
that successfully simulated synaptic dynamics, such as
short-term plasticity (STP), long-term potentiation (LTP),
and long-term depression (LTD) [16–18]. A MoS2/
PTCDA hybrid heterojunction synapse has been demon-
strated with efficient photoelectric dual modulation [10].
A carbon nanotube synapse [19] and silicon-based MoS2
synapse [20] showed dynamic logic. However, the men-
tioned studies focused only on the synaptic level. In some
studies, different conductance states were realized to
prove that their devices could be used to build artificial
neural networks (ANNs), but they did not put the con-
ductive states into the ANNs for calculation [21, 22]. In
this work, 120 continuous conductance states are modu-
lated, and the corresponding conductance values are used
in the trained face recognition network for calculation; an
excellent recognition rate of 100% is achieved.

Methods
The schematic structure of our synaptic device is shown
in Fig. 1d, where it can be seen that a 70-nm ITO (in-
dium tin oxide) film was deposited on the SiO2/Si sub-
strate as a back gate electrode. The substrate was a Si
wafer with 200-nm SiO2 on top. It was first cleaned with
the acetone, isopropyl alcohol, and deionized water, and
then dried with N2 gas before the ITO deposition. The
ITO layer was first deposited by sputtering and then
annealed at 400 °C in the N2 atmosphere for 10 min by
rapid thermal processing (RTP). Transparent ITO elec-
trodes are used in order to accurately fabricate source
and drain electrodes using electron beam lithography.

The Al2O3/ZrO2/Al2O3 sandwiched structures with a
thickness of 12 nm, 4 nm, and 4 nm were grown on the
ITO by atomic layer deposition (ALD) as a barrier layer,
an electron capture layer, and a tunneling layer respect-
ively. Next, the mechanically exfoliated ReS2 flakes with
a thickness of about 3.6 nm were deposited as a channel
under the patterned Ti/Au electrodes. The Ti/Au elec-
trodes with 10-nm and 70-nm thickness were patterned
using the electron beam lithography followed by the
electron beam evaporation as a source and a drain, re-
spectively. Figure 1c shows the atomic force microscope
image of our 3.6-nm thickness ReS2 film (about five
layers); the channel length was designed to be 1.5 μm
(see the inset in Fig. 1b). In this work, the ITO back gate
acted as a presynapse neuron, and the Ti/Au electrodes
acted as a postsynapse neuron. A small and constant
voltage was applied between the source and drain elec-
trodes, while the ITO back gate electrode was applied
with pulses to modulate synaptic device performance.

Results and Discussion
Figure 2a shows the transfer characteristics of our synaptic
device at a 2-V back gate voltage (Vbg = 2 V) under a fixed
drain-to-source voltage (Vds) changing from 100 to 700mV
with the step of 100mV. An On/Off current ratio over 106

could be observed. The curve displayed the drain-to-source
current (Ids), which first increased rapidly and then became
saturated; the excellent saturation characteristics corre-
sponded to the strong channel regulation by the ITO back
gate electrode. Unlike the traditional transistors, which use
silicon as a bottom gate electrode and SiO2 as a dielectric at

Fig. 1 The synaptic devices based on ReS2 2D material. a Crystal structure of monolayer ReS2. b Optical image of a five-layer ReS2 flake. Inset:
source and drain electrodes patterned on the ReS2 flake; direction b is taken as the direction of channel current. c The AFM image and height
profile of the ReS2 flake. d Schematic diagram of a 2D material ReS2 synaptic device. The thickness of the Al2O3, ZrO2, and Al2O3 stack (from
bottom) is 12 nm, 4 nm, and 4 nm, respectively
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the operation voltage of usually more than 20 V [23], the
operation voltage of our synaptic device with only a 20-nm
distance between the ReS2 channel and ITO back gate elec-
trode was below 5V, significantly improving the efficiency
of synaptic device. The inset in Fig. 2a shows the
superlinear relationship under the low-Vds regimes, which
demonstrates a good Schottky contact between the ReS2
channel and source and drain electrodes. As shown in Fig.
2b, Ids–Vbg hysteresis curve could be observed when Vbg

changed from − 5 to 5 V and then reversed back at a con-
stant bias of 0.1 V (Vds = 0.1 V). In the measurements, a
small constant voltage of 0.1 V was applied between the
source and drain electrodes to “read” the postsynaptic
current. The memory window, which provided the basis for
synaptic performance, was about 3.5 V; such a big memory
window made our ReS2 device very promising for synaptic
applications [24]. Since the top of the valence band of ZrO2

was higher than that of Al2O3, and the bottom of the con-
duction band was lower than that of Al2O3 (see the inset in
Fig. 2c), ZrO2 used as an intermediate layer sandwiched be-
tween alumina could capture charge effectively. The energy
band diagrams under positive and negative back gate volt-
age are shown in Fig. 2c and d, respectively. When a posi-
tive voltage was applied, electrons in the ReS2 channel
would first tunnel through the Al2O3 tunneling layer, then

be captured by the ZrO2 trapping layer. On the contrary,
when ITO was applied with a negative voltage, electrons
gathered in the ZrO2 layer would be sent to the ReS2 chan-
nel; the energy bands bent in the direction of the channel.
In Fig. 3a, a typical excitatory postsynaptic current

(EPSC) was detected after applying a negative input pulse
(with the amplitude of − 1 V and duration of 10ms) at the
ITO back gate. Also, an inhibitory postsynaptic responded
to a positive voltage pulse (with the amplitude of 1 V and
duration of 10ms) was observed in Fig. 3b, which is simi-
lar to a biological synapse [25]. The pulse signal from the
presynapse neuron was transmitted to the postsynapse
neuron through the synapse and converted into the post-
synaptic current (PSC) [26]. The PSC value was deter-
mined by pulse amplitude and duration. When the pulse
was negative, the electrons from the defects of ZrO2

gained enough energy to tunnel through the upper Al2O3

dielectric layer into the ReS2 channel. The constant value
of the current was slightly higher than the previous value
(ΔPSC = 0.04 nA) and could maintain for a long time.
This phenomenon corresponded to the long-term potenti-
ation (LTP) in the biological synapse. However, when the
pulse was positive, electrons in the ReS2 channel tunneled
through the Al2O3 layer under the attraction of the elec-
tric field and were captured by the defects of ZrO2. Thus,

Fig. 2 Electrical properties of the ReS2 synaptic devices. a Transfer characteristic (Ids–Vbg) of the ReS2 synaptic devices at a fixed Vds changing
from 100 to 700 mV with the step of 100 mV. b Output characteristic (Ids–Vds) of the ReS2 synaptic devices at a fixed Vbg changing from − 2 to 2
V with the step of 1 V. c Hysteresis loop at Vbg of ± 5 V sweep ranges. Vds was kept at 100 mV. d Energy band diagram of the ReS2 synaptic
devices with positive back gate voltage. Inset: energy levels of Al2O3 and ZrO2. e Energy band diagram of the ReS2 synaptic devices with negative
back gate voltage
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the constant value of the current was slightly lower than
the original value and could maintain the same for a long
time (ΔPSC = 0.06 nA). This process corresponded to the
long-term depression (LTD) in the biological synapse. The
LTP and LTD provided a physiological substrate for learn-
ing and memory in synaptic devices. When the negative
pulses with the amplitude of − 2 V and duration of 10ms
were applied continuously, with a 1-s interval between
pulses, the rising current in the two steps was observed, as
shown in Fig. 3c. The rising current values were 1.6 nA
and 1.4 nA, respectively. Therefore, a continuous and uni-
formly rising current could be obtained under the periodic
gate voltage pulses, and the steady current after stimula-
tion could last for a long time, as shown in Fig. 3d. This
finding provided a basis for obtaining the multiple stable
conductive states.
Figure 4a shows 120 current values after applying 120

negative pulses with an amplitude of − 2 V and a dur-
ation of 10 ms and with a 1-s interval between pulses.
Apparently, the current curve showed excellent linearity,
120 effective high-stability conductance states were ob-
tained in each state. Different conductance states corre-
sponded to different ANN weight values [27].
In this work, a three-layer artificial neural network for

face recognition task is proposed, and its structure is
presented in Fig. 4b, wherein it can be seen that the in-
put layer consists of 1024 neurons that correspond to

1024 pixels of an image, the middle (hidden) layer con-
sists of 256 neurons, and the output layer consists of 15
neurons that correspond to 15 classes of faces.
The development of the proposed ANN is as follows. A

total of 165 pictures, including 15 types of pictures from
Yale Face database [28] are used for ANN training and
testing. Eight images of each type are used for ANN train-
ing, and the remaining three images of each kind are used
for ANN testing. Given that the modules are smooth
functions relative to their inputs and their internal
weights, the multilayer architectures can be trained by
simple stochastic gradient descent, and the gradients are
generally computed by the backpropagation procedure
[29]. Therefore, we use the classical backward propagation
(BP) algorithm to build our network and show how the
BP algorithm works for our ANN.
In this work, Xm represents an input neuron, so the input

value of a hidden neuron can be expressed as:

Y in ¼
X1024

m¼1

XmVmn

where Vmn represents the weight value between an input
neuron Xm and a hidden neuron Yin, and all Vmn form the
matrix V having a total of 1024 × 256 weight values; the
initial value of this matrix is randomly assigned. The

Fig. 3 Synaptic performance of the ReS2 synaptic devices. a The excitatory postsynaptic current (EPSC) triggered by the input pulse (− 1 V, 10
ms). b The inhibitory postsynaptic current (IPSC) triggered by a presynaptic spike (1 V, 10 ms). c Pair of output spikes of EPSC triggered by two
consecutive input pulses (− 2 V, 10 ms, and with a 1-s interval between pulses). d Retention characteristics of the ReS2 synaptic devices after a − 3
V and 10 ms presynaptic spike
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activation function of the hidden layer is the sigmoid func-
tion, so the output value of a hidden neuron is given by:

Yon ¼ 1
1þ eY in

Thus, the input value of an output neuron can be expressed
as:

Zik ¼
X256

n¼1

YonWnk

where Wnk represents the weight value between a hidden
neuron Yon and an output neuron Zik, and all Wnk form the
matrix W with a total of 256 × 15 weight values; the initial
value of Wnk is also randomly assigned. Besides, we use the
sigmoid function as an activation function of the output layer,
so that the output value of an output neuron is given by:

Zok ¼ 1
1þ eZik

Comparing the above-calculated output with the correct
output, the total output error can be obtained, and it is
expressed as:

E ¼ 1
2

X15

k¼1

Ok−Zkð Þ2

where Ok is the correct output value. So far, the forward
propagation process of the network has been completely
described. To improve the recognition rate, the backpro-
pagation process is needed to calculate the errors of the
weights, and they are used to update the network weights
in the next iteration.

ΔVmn ¼ μ
∂E

∂Vmn

ΔWnk ¼ μ
∂E

∂Wnk

Vmn
0 ¼ Vmn þ ΔVmn

Wnk
0 ¼ Wnk þ ΔWnk

In the above mathematical expressions, ΔVmn and
ΔWnk respectively represent the errors of Vmn and Wnk;
after adding the errors to the original weight, we get the
updated weight Vmn

′ and Wnk
′; μ is the learning rate,

Fig. 4 Artificial neural network for face recognition. a 120 conductance states after applying 120 negative pulses (− 2 V, 10 ms, and with a 1-s
interval between pulses). b The three-layer ANN with 1024 input neurons, 256 hidden neurons, and 15 output neurons. c Flowchart of the
training-recognition cycle
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and μ = 0.06. After updating the weights, a new image is
fed to the ANN, and the weight update process is re-
peated until all 120 images have been used for training.
Next, we use the trained network to identify the
remaining 45 images and calculate the recognition rate.
The ANN testing process requires only the forward
propagation process. Each image used for testing gets 15
output values after a forward propagation. The output
value reflects the probability that the input image is of a
certain type. The output with the maximum probability
value is selected, and the corresponding type is the type
of the input picture identified by the network. The rec-
ognition results are compared with the standard output;
all correctly identified pictures are counted, and their
total number is n. In each training-recognition cycle, the
recognition rate r is given by:

r ¼ n
45

� 100%

Generally, the recognition rate of the first recognition
is very low, and in our ANN with 256 hidden neurons,
the first recognition rate is only 17.78%. The above
training-recognition process is repeated until the max-
imum recognition rate is obtained. The whole training-
recognition cycle is shown in Fig. 4c.

As shown in Fig. 5a, during the ANN development
process, the maximum recognition rate and rising
speed of recognition rate (training speed) were differ-
ent at a different number of hidden neurons. A larger
number of hidden neurons led to a higher maximum
recognition rate and a faster rising speed, but also in-
creased energy consumption, so certain tradeoff
should have to be made. In the case of 256 hidden
neurons, the recognition rate reached 100% after 600
iterations of training, as shown in Fig. 5b. Since this
was definitely the maximum recognition rate that
could be achieved, in our ANN, we set the number
of hidden neurons to 256. The distribution of weight
values after different training-testing cycles is pre-
sented in Fig. 5c, and it indicates that the weights be-
came more scattered after more cycles, that is to say,
to reach a higher recognition rate, the weights in the
ANN had to be adjusted. Once we achieved the max-
imum recognition rate, the matrices V and W having
the optimal weight value were obtained. To demon-
strate better that our ReS2 device is suitable to be ap-
plied to ANNs, all weight values in the weight
matrices V and W were replaced by device’s conduct-
ance values. We used Ij(j = 1, 2, 3⋯120) to represent
120 conductance values that were obtained after 120
cycles, and we made a linear transformation of the

Fig. 5 Realization of the face recognition. a Recognition rate curve at different numbers of hidden neurons (32, 64, 128, and 256). b Recognition
rate curve at 256 hidden neurons; the recognition rate reaches 100% after nearly 600 training-testing epochs. c The distribution of weight values
after 10 to 90 (in steps of 20) training epochs. d The distribution of weight values after 100 to 600 (in steps of 100) training epochs. e
Recognition rate after the replacement; the weight values were replaced after 100~500 training epochs (in steps of 100)
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original conductance values so that conductance range
was consistent with the weight range, which was given by:

C j ¼ AI j þ B

where Cj represented the weight value after the linear
transformation. In the case of 600 cycles, the linear trans-
formation coefficients were A = 1.3769 × 1010 and B = −
65.784. Next, we subtracted each Cj from each weight
value and replaced the weight value with Cj that had the
smallest absolute value after subtraction; namely, we cal-
culated min|Vmn −Cj|, min|Wnk −Cj| and replaced each
weight value with the corresponding Cj. In this way, we
obtained new V and W weight matrices wherein all the
weight values were replaced by Cn. Then, we used our
new weight matrices in ANN testing, and the ANN recog-
nition rate of 100% was achieved, which proved that our
120 conductance states could be perfectly used as weight
values in the ANN. For the purpose of further analysis, we
replaced the weight values after 100~500 training cycles
(in steps of 100), and the identification results obtained
after the replacement are completely consistent with the
original one, as shown in Fig. 5d. This proves that these
120 current values could perfectly replace over 105 weight
values for calculation. By further increasing the number of
gate pulses, more conductance states could be obtained,
which proved that our ReS2 device could be used in a
large-scale neural network system.

Conclusions
In this work, we introduce a high-k dielectric stack
based 2D ReS2 synaptic device and demonstrate some
fundamental synaptic behaviors such as long-term po-
tentiation and long-term depression. The results show
that our ReS2 device can simulate synaptic performance
well. Also, an ANN is constructed to prove the applica-
tion of the proposed device in artificial neural networks.
Applying 120 periodic gate voltage pulses, 120 effective,
clearly distinguished conductance states are obtained,
and they are used to replace more than 105 weights in
the ANN for face recognition. The recognition rate of
100% is achieved after replacement. This excellent result
demonstrates that our ReS2 synapse can be used to build
an artificial neural network.
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2D: Two-dimension; ALD: Atomic layer deposition; ANN: Artificial neural
network; LTD: Long-term depression; LTP: Long-term potentiation
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